International Workshop
Modelling quality traits and their genetic
variability for Wheat
18-21 July Clermont Ferrand

Genetic determination of protein quality in wheat grain

Gérard BRANLARD

INRA

Clermont Ferrand

Genetic determination of protein quality in wheat grain

Genetic aspects of wheat storage proteins

Wheat storage proteins and quality

Quantitative variations of wheat storage proteins

Some other proteins involved in quality

Wheat endosperm and Protein matrix

Wheat Endosperm Proteins

Protein type	Solubility	% flour protein	Characteristics	
Albumins	Water	10	Enzymes and	
			cell structure	
Globulins	NaCl 0.5M	10	MWs 5 – 100 kDa	
Gliadins	Alcohol	35-45	Monomeric	
			MWs 30 – 80 kDa	
Glutenins	SDS		Polymeric	

10-15

20-30

MWs 75 -120 kDa

MWs 25 - 45 kDa

HMW-GS

LMW-GS

+ R. A.

Soluble proteins

Storage proteins

Gluten protein classification

From Shewry P. et al. 1986

Genetic determination of protein quality in wheat grain

Genetic aspects of wheat storage proteins

Wheat storage protein diversity Ch 1 A B D

Main locus involved in synthesis of wheat endosperm storage proteins

WSPs are encoded by clusters of genes

Some alleles of HMW-GS and LMW-GS

Structural diversity of the glutenin subunits

Main alleles encoding HMW-GS

Glu-D1

Allelic diversity of the LMW-GS

Allelic diversity of Gliadins

Allelic diversity of wheat storage proteins

	HMW-GS			LMW-GS		ω-Gliadins			
Cultivars	Glu-A1	Glu-B1	Glu-D1	Glu-A3	Glu-B3	Glu-D3	Gli-A1	Gli-B1	Gli-D
'Abo'	С	b	d	a	b	С	k	b	b
'Aboukir'	c	b	d	a	g	b	k	f	f
'Aiglon'	c	a	d	ef	g	c	f	e	b
'Albatros'	c	b	a	d	f	c	0	e	b
'Alpe'	b	b	d	a	b	c	b	b	b
'Alto'	c	b	d	a	g	c	k	f	b
'Alvina'	c	b	d	a	С	c	k	b	b
'Ami'	c	b	d	a	c'	c	0	b	b
'Apexal'	c	c	d	a	g	c	b	e	b
'Apollo'	c	d	a	d	j	c	0	1	b
'Apostole'	c	i	a	ef	g	b	b	f	g
'Arbon'	c	d	a	a	b	c	a	b	b
'Arcane'	c	b	a	a	g	b	a	f	f
'Arche'	c	d	a	d	g	С	0	f	b
'Arcole'	c	b	c	d	g	С	0	f	b
'Arfort'	b	i	d	a	b	a	b	b	b
'Aristide'	b	a	d	a	c'	c	b	b	j
'Armada'	c	d	a	ef	f	С	m	g	b
'Arminda'	c	a	a	a	g	С	f	f	b
'Armur'	c	c	d	a	g	С	k	f	b
'Arsenal'	a	d	a	a	g	a	f	e	b

How these Wheat Storage Proteins are assembled?

Covalent SS links between wheat storage proteins

SDS insoluble glutenin polymer formation in developing grains of wheat, (cv: Soissons)

From Carceller JL, Aussenac T., Aust. J. Plant Physiol 2001, 28; 193-201 reproduced with permission

Genetic determination of protein quality in wheat grain

Genetic aspects of wheat storage proteins

Wheat storage proteins and quality

Wheat gluten proteins as part of the bread making quality

Mixographe

Comparison of alleles effects for phenotypic values of dough strength

Locus	Strength
GluA1	2* = 1 > null
GluB1	$17-18 \ge 13-16 \ge 7-9 = 7-8 \ge 7 = 6-8$
GluD1	5-10 ≥ 3-12 = 2-12 ≥ 4-12
GluA3	a = d = f ≥ e
GluB3	$b' \ge d = c = c' = b = g > i > f \ge j$
GluD3	$a \ge b = d = c$
GliA2	$t \ge k = r = f = g = j \ge l = b = p$

 $m > b \ge r \ge h = o = g \ge ae = l = ac$

GliD2 $m = e \ge a = h = v = g = n$

GliB2

Comparison of alleles effects for phenotypic values of dough extensibility

```
Locus
                   Extensibility
GluA1
        nsd
GluB1 13-16 \ge 7-8 = 7-9 = 17-18 \ge 7 \ge 6-8
GluD1 nsd
GluA3 d = a = f \geq e
GluB3 i \ge b' \ge c = c' = g > b = f = d > j
GluD3
       nsd
GliA2 b = t \ge k = g = l \ge p = r = f = j
GliB2 ae \ge m \ge g = 0 = h = ac \ge b = r = l
GliD2
         nsd
(nsd: not significantly different)
```

From: Branlard G., Dardevet M., Saccomano R., Lagoutte F., Gourdon J. Euphytica, 2001, 119, 59-67

Interactions between Glu-1 and Glu-3 loci

Part (R2) of Protein content, G. Hardness, HMW, LMW GS and α , β , γ -gliadins in the genotypic variations of six bread wheat quality parameters

30%

31%

25%

24%

Genetic determination of protein quality in wheat grain

Genetic aspects of wheat storage proteins

Wheat storage proteins and quality

Quantitative variations of wheat storage proteins

Regulation of the expression Promoter region of the LMW-GS Glu-3D

TGTAAAGTGATACTATCTTGATAAGTGTGTGACATGTAAAGTTAATAAGGTGAGTCATA

Quantitative variation of some HMW-GS

Regulation of the expression: Duplication of a sequence in promoter region

TTAAATATATTGTAAAATATTCCGGCAACAACTTGTGGGGGCCTTAAATATATTGTAAAATATTCCGGCAACAACTTGTGGGG

From :Juhász, G á rdonyi, Tamás, Bedő. 2003, Xth Int Wheat Genet Symp. Paestum, Italy 1348-1350

Regulation of the expression

Regulation of the quantitative expression of the different loci

interactions between chromosomes (homologous and homeologous)

Regulation of the quantitative expression of the different loci interactions between homeologous chromosomes. cv Courtot

Regulation of the quantitative expression of the different loci interactions between homolgous chr and homeologous chr.

Dumur J, Jahier J, Bancel E, Laurière M, Bernard M, Branlard G 2004, Proteomics, 4, 2685-2695

Regulation of the quantitative expression of the different loci interactions between homolgous chr and homeologous chr.

Dumur J, Jahier J, Bancel E, Laurière M, Bernard M, Branlard G 2004, Proteomics, 4, 2685-2695

Effect of nullisomy and monosomy on the amount of wheat storage proteins as compared to the normal cultivar Courtot

Protein	Nullisomic	Monosomic	Courtot
Class	40 ch	41ch	42 ch
HMW-GS	NS		=
LMW-GS			=
Gliadins	NS	NS	=
Gliadins Glutenins		NS	=

Effect of warm temperature on wheat proteome at kernel maturity on cv Thésée

Genetic determination of protein quality in wheat grain

Genetic aspects of wheat storage proteins

Wheat storage proteins and quality

Quantitative variations of wheat storage proteins

Some other proteins involved in quality

Amphiphilic proteins of Synthetic and Opata

Identification of the proteins in the puroindoline zone

From: Branlard G., Amiour N., Igrejas G., Gaborit T., Herbette S., Dardevet M., Marion D. Proteomics 2003, 3, 168-174

Conclusion

Wheat Storage Proteins like many plant characters are inherited by families of multigenes.

A very large diversity of WSP has been described, rending more complicated the search of associations between all the different combinations of alleles and technological properties.

The use of the known alleles of glutenins and gliadins allow today to create wheats suitable for the main uses

Accumulation of the grain components and particularly WSP are continually influenced by changing environment.

Today the major criticism on the wheat varieties is not the lack of quality but rather their environmental instability.

Question: How to find-out the key genes that govern the kernel protein content for future quality wheat?

Micro-array provides a complex picture of the numerous DNA sequences which could be directly or not associated to the character

Micro-array is a bottom-up approach for studying gene expression

Proteomic approach is an unavoidable tool for studies on:

- gene expression, functional genomic, gene regulations
- relation between genotype and phenotype
- etc...

Proteomic is the **top-down** approach particularly useful for studies on plant physiology and environmental influence

Acknowledgements

Dr Evgueni METAKOVSKY
Dr Jérôme DUMUR
Dr Emmanuelle BANCEL
Dr Pierre MARTRE
Dr Eugène TRIBOÏ

Thank you

